Snabbast konvergens iterationer

The Krasnosel’skiĭ–Mann (KM) iteration is a widely used method to solve fixed point problems. This paper investigates the convergence rate for the KM iteration. We first establish a new convergence rate for the KM iteration which improves the known big- O O rate to little- o o without any other restrictions. The proof relies on. 1 sekantmetoden 2 tiv metod eftersträvar vi att ha ett litet S och ett stort p eftersom det ger snabbare konvergens. Det enklaste fallet är p = 1, vilket kallas linjär konvergens. Då minskar felet asymptotiskt med en fix faktor i varje iteration, |en+1| ≈ S|en| ≈ S2|en−1| ≈ S3|en−2| Vi ser att vid linjär. 3 noggrannhetsordning 4 The aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like. 5 A technique for improving the order of convergence of any given iterative method is introduced. Based on an iterative method of order p ≥ 2 which uses the extended Newton iteration as a predictor, a new method of order p + 2 can be constructed by introducing only one. 6 A faster King–Werner-type iteration and its convergence analysis Janak Raj Sharma a Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal, India Correspondence jrshira@ 7 konvergens konstant 8 Det enklaste fallet är p = 1, vilket kallas linjär konvergens. 9 Iterationen verkar konvergera. 10
snabbast konvergens iterationer